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Abstract

Background
Available biomarkers lack sensitivity for early lung cancer. Circulating genetically abnormal cells (CACs)
occur early in tumorigenesis. To determine the diagnostic value of CACs in blood detected by 4-color
�uorescence in situ hybridization (FISH) for lung cancer.

Methods
This was a prospective study of patients with pulmonary nodules ≤ 30 mm detected between 10/2019
and 01/2020 at four tertiary hospitals in China. All patients underwent a pathological examination of
lung nodules found by imaging and were grouped as malignant and benign. CACs were detected by 4-
color FISH. Patients were divided into the training and validation cohorts. Receiver operating
characteristics analysis was used to analyze the diagnosis value of CACs.

Results
A total of 205 participants were enrolled. Using a cut-off value of ≥ 3, blood CACs achieved areas under
the curve (AUCs) of 0.887, 0.823, and 0.823 for lung cancer in the training and validation cohorts, and all
patients, respectively. CACs had high diagnostic values across all tumor sizes and imaging lesion types.
CACs were decreased after surgery (median, 4 vs. 1, P < 0.001) in the validation set. The CAC status
between blood and tissues was highly consistent (kappa = 0.909, P < 0.001). The AUC of CAC (0.823) was
higher than that of CEA (0.478), SCC (0.516), NSE (0.506), ProGRP (0.519), and CYFRA21-1 (0.535) (all P 
< 0.001).

Conclusions
CACs might have a high value for the early diagnosis of lung cancer. These �ndings might need to be
validated in future studies. Evidence suggested homology in genetic aberrations between the CACs and
the tumor cells.

Background
Lung cancer is the leading cause of mortality globally, especially in smokers and elderly (1, 2). There were
an estimated 2,093,876 new cases of lung cancer worldwide in 2018, with an annual age-standardized
incidence of 31.5/100,000 in men and 14.6/100,000 in women (3). The National Comprehensive Cancer
Network (NCCN), the CHEST guideline and expert panel report, and the U.S. Preventive Services Task
Force recommend low-dose computed tomography (LDCT) screening for people aged 55–74, currently
smoking or with ≥ 30 pack-year history of smoking, and past smokers for < 15 years (4–6), and screening
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can be considered in individuals ≥ 50 years of age, a ≥ 20 pack-year history of smoking, and additional
risk factors (including personal history of cancer or lung disease, family history of lung cancer, radon
exposure, or relevant occupational exposure) that increases the risk of lung cancer to ≥ 1.3% (not
including second-hand smoke exposure) (4–6). Early diagnosis is paramount for prognosis, since the
�ve-year survival rate is 56% for patients with localized disease, 30% for those with regional disease, but
only 5% for individuals distant disease (2, 6).

The current early detection methods for lung cancer are not su�cient. Indeed, available biomarkers (like
carcinoembryonic antigen) and circulating nucleic acids have a low sensitivity (7–9). Plain X-ray,
computed tomography (CT), and positron-emission tomography (PET)/CT have relatively high rates of
false-positive and have low sensitivity for tumors < 10 mm and pure ground-glass nodules (10–13).
Importantly, biopsy is an invasive diagnosis method and is associated with possible complications like
infection and pneumothorax.

Genetic abnormalities in tumor suppressor genes and proto-oncogene are common in lung cancer (14,
15), but cannot be used for the screening of lung cancer because of the low yield of cancer cells in the
blood, tumor heterogeneity, and unknown imminency between the detection of the abnormality and
actual malignant transformation (16). Cancer cells are often unable to maintain chromosome numbers
and structures because of rapid uncontrolled growth and division 16. Chromosomal aberrations, including
rearrangements and aneusomy, are frequently found in early lung cancer (17–19). Importantly, a study of
seven lung cancer specimens showed that chromosomal instability is found both in 8.5% and 59% of the
premalignant and malignant lesions, respectively, within the same patients (20), indicating that speci�c
chromosomal aberrations occur in the early stage of tumorigenesis (16). Circulating genetically abnormal
cells (CACs; i.e., cells that carry chromosomal instability) occur early in tumorigenesis and CACs can be
detected from the blood (21, 22). Ruth et al. developed a 4-color �uorescence in situ hybridization (FISH)
assay to identify CACs from peripheral blood of lung cancer patient (22).

The study aimed to evaluate the diagnostic value of CACs detected by 4-color FISH for lung cancer, as
well as to examine the genetic abnormalities between CACs and tumor cells. The results could be a novel
sensitive and speci�c biomarker for the early detection of the disease.

Materials And Methods
Study design and participants

This was a prospective study of patients with pulmonary nodules detected between October 2019 and
January 2020 at the Zhongshan Hospital A�liated to Fudan University, the Second Hospital A�liated to
Zhongshan University (Sun Yat-Sen Memorial Hospital), Suining Central Hospital, and Shanghai Chest
Hospital. The study has approved by the ethics committee of Zhongshan Hospital A�liated to Fudan
University (b2019-185r) and by the ethics review committees of the three other hospitals. Written inform
consent was provided by all participants before the study.
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The inclusion criteria were: 1) single or multiple pulmonary nodules ≤30 mm detected by CT or LDCT
within the past 6 months; 2) >18 years of age; and 3) planned to undergo non-surgical biopsy or surgical
resection of the pulmonary nodules and histopathological examination. The exclusion criteria were: 1)
lactating, pregnant, or preparing pregnant women; 2) severe heart, lung, liver, or kidney dysfunction or
mental disorders; 3) previous clinical therapeutic interventions related to lung cancer, such as surgery,
radiotherapy, chemotherapy, targeted treatment, or immunotherapy; 4) sampling problem that could not
meet the requirements for histopathological examination; or 5) history of a malignant tumor within 5
years.

Grouping

CAC detection was performed for all participants within 5 days preoperatively, and within 5 days
postoperatively for some of them. We enrolled the participants without postoperative blood collection as
the training set and those with postoperative blood collection as the validation set.

CAC detection

Peripheral blood (10 ml) and tissue samples were collected preoperatively and postoperatively for CAC
detection. Chromosome 3 and 10 (probes for 3p22.1/3q29 (196F4) and 10q22.3/CEP10) abnormalities
of peripheral blood mononuclear cells (PBMCs) of the pulmonary nodule population were qualitatively
detected using the Mononuclear Cell Chromosomal Abnormality Detection Kit (Zhuhai Sanmed
Biotechnology Ltd.). The assay was performed according to manufacturer’s manual and was described in
previous publications (cite our own papers). In brief, PBMCs were enriched via Ficoll density gradient and
deposited to microscope glass slides by Cytospin system (Thermo Fisher). Cells were subsequently �xed
for 4-color FISH (cite our and Ruth paper) or storage at -20°C. Cell nuclei were stained with 4’, 6-diamidino-
2-phenylindole (DAPI).

The FISH samples were digitalized by the Duet System (Allegro plus, BioView Ltd.) to visualized the
chromosomal targets in Chr. 3 and 10. Signal distribution in each cell were enumerated to identify
chromosome loci gain or loss. Cells with polysomy in at least two different �uorescence channels were
characterized as CACs.

Biomarkers

Peripheral blood samples were taken from each participant in 3-ml anticoagulant tubes for the
measurement of the carcinoembryonic antigen (CEA), progastrin-releasing protein (ProGRP), squamous
cell carcinoma antigen (SCC), and CYFRA21-1 levels. On the same day as collection, the tumor
biomarkers were measured using electrochemiluminescence immunoassays (ECLIA) on a Roche Elecsys
E170 analyzer (Roche Diagnostics, Switzerland).

Data collection
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The characteristics of the participants (age, sex, and smoking history) were collected. The diagnosis of
the nodules was classi�ed into malignant (lung squamous cell carcinoma, invasive adenocarcinoma,
micro-invasive adenocarcinoma, and malignant others) and benign (benign tumors,
infection/in�ammatory lesions, and benign others). The largest nodule size and the largest nodule type
for each patient were recorded. LDCT examination was performed by the 64-section multidetector CT
machine (Siemens, Erlangen, Germany).

Statistical analysis

Continuous data with a normal distribution were presented as means ± standard deviation and analyzed
using the independent sample t-test. Continuous data with a skewed distribution were presented as
medians (interquartile ranges) and analyzed using the Mann-Whitney U test. Categorical data were
expressed as n (%) and analyzed using the chi-square test or Fisher's exact probability test. Receiver
operating characteristic (ROC) curves were used to identify the cut-off value for CACs, the area under the
curve (AUC), sensitivity, speci�city, and other indicators. The numbers of postoperative and preoperative
CACs in the validation set were tested using the Wilcoxon signed rank-sum test. The consistency of CACs
in blood and tissue was tested by the Kappa test. All analyses were performed using SPSS 22.0 (IBM,
Armonk, NY, USA). Two-sided P-values <0.05 were considered statistically signi�cant.

Results
Baseline information

A total of 205 participants were enrolled (112 in the training set and 93 in the validation set) (Table 1).
There were 97 (47.3%) males. The median age was 62 (54-67) years. Among the 205 participants, 168
(82.0%) had malignant lesions. The median longest diameter of the nodules was 18 (12-24) mm. Seventy
participants (34.2%) had pure ground-glass lesions, 96 (46.8%) had solid lesions, and 39 (19.0%) had
mixed lesions. CACs were counted from the participants’ blood before and after the operation; the median
preoperative and postoperative CAC counts were 4 (2-7) and 1 (0-5), respectively. There were no
signi�cant differences between the two sets (all P>0.05).

ROC analysis of CACs for the diagnosis of lung cancer

Fig. 1 shows a typical case of a patient with a large solid nodule in the lung and positive CAC results.
Preoperative CT revealed a solid nodule (Fig. 1a). CACs were analyzed by 4-color �uorescence in situ
hybridization (Fig. 1b). The CEP10 is diploid and it has a split/diffused signal. The combined images of
CACs show polysomy/gain of 3p22.1 (red), polysomy/gain of 3q29 (green), whereas 10q22.3 (gold, two
copies) and CEP10 (aqua) was diploid (Fig. 1c). The participant had 3 CACs before surgery and 0 after
surgery (Fig. 1d). Histopathological examination revealed adenocarcinoma of the lung. The
chromosomal abnormalities were also found in the tissue specimens (Fig. 1e).
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We achieved an 86.5% sensitivity rate, a 78.3% speci�city, an AUC of 0.887, a 93.9% positive predictive
value (PPV), a 60.0% negative predictive value (NPV), and the 3.98 positive likelihood ratio (PLR) in the
training set, when the cut-off value is set as ≥3 CAC (Fig. 2). In the validation set, using the same CAC
cut-off value, we observed 86.1% sensitivity, 78.6% speci�city, 0.823 AUC, 95.8% PPV, 50.0% NPV, and
4.02 PLR (Fig. 2b). In all participants, using a cut-off value of ≥3 CACs, 86.3% sensitivity, 78.4%
speci�city, 0.823 AUC, 94.8% PPV, 55.8% NPV, and 3.99 PLR were obtained (Fig. 2c). Supplementary Table
1 shows the sensitivity and speci�city values according to different CAC cut-off levels. It should be noted
that the three data sets of specimens yielded similar results, suggesting that the training and validation
sets were consistent.

CAC diagnostic power in different nodule sizes

The participants were divided according to their lesion size. In participants with a lesion 0-9 mm, using a
cut-off value of ≥3, CAC achieved 84.2% sensitivity, 85.7% speci�city, AUC of 0.850, 94.1% PPV, 66.7%
NPV, and 5.90 PLR (Supplementary Fig. 1a). In participants with a lesion 10-29 mm, CAC achieved 85.5%
sensitivity, 74.1% speci�city, AUC of 0.798, 94.4% PPV, 50.0% NPV, and 3.30 PLR (Supplementary Fig. 1b).
In participants with a lesion of 30 mm, CAC achieved 100% sensitivity, 100% speci�city, AUC of 1.000,
100% PPV, 100% NPV, and not-applicable PLR (Supplementary Fig. 1c). Those results indicate that the
tumor size has minimal or no impact on the diagnostic value of CACs.

CAC diagnostic power in different nodule types

The participants were grouped according to the type of lung lesion at imaging. In participants with a pure
ground-glass, solid, and mixed lesions and using a cut-off value of ≥3, CAC achieved
82.0%/90.4%/85.3% sensitivity, 77.8%/73.9%/100% speci�city, AUC of 0.799/0.822/0.926,
96.2%/91.7%/100% PPV, 38.9%/70.8%/50.0% NPV, and 3.69/3.47/NA PLR (Supplementary Fig. 2). Those
results indicate that the type of radiological lesion has no impact on the diagnostic value of CACs.

Correlation between Blood and Corresponding Lung Cancer Tissue

168 patients’ peripheral blood and tumor tissues, who underwent surgical resection of their lung tumors,
were obtained in paired sets. The same set of 4-color FISH probes was used in both the blood and tumor
specimens. We observed a signi�cant correlation between four genetical abnormalities in PBMCs and
corresponding biomarkers in the tumor specimens. Table 2 shows the postoperative and preoperative
CAC counts in the validation set. The CAC count was signi�cantly decreased after surgery (median, 4 vs.
1, P<0.001). Table 3 shows that the genetic abnormalities between CACs and tumor cells were highly
consistent (kappa=0.909, P<0.001).

Sensitivity and speci�city of common biomarkers

The diagnostic value of different biomarkers was assessed and compared with CACs (Table 4). The AUC
of CAC (0.823) was higher than that of CEA (0.478), SCC (0.516), NSE (0.506), ProGRP (0.519), and
CYFRA21-1 (0.535) (all P<0.001).
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Discussion
It has been well documented that the commonly available serum tumor biomarkers for provides little
diagnostic value for early lung cancer diagnosis (7–13). CACs occur early in tumorigenesis and might be
of use as a biomarker for lung cancer (21, 22). The results indicates that CACs have a high value for the
early diagnosis of lung cancer. This will have to be validated in future studies as an early screening tool
for lung cancer. Nevertheless, the results could be a novel sensitive and speci�c biomarker for the early
detection of the disease. In many studies on the early diagnosis of lung cancer, the control group includes
healthy people (without nodules). The disadvantage of this control group is the lack of histopathological
results, and the actual absence of lung cancer cannot be con�rmed. Therefore, in the present study, the
control group included patients with benign lung nodules proven pathologically.

In this study, CACs show a high diagnostic value for tumors of all sizes, even for tumors of 0–10 mm.
This is of particular interest in a screening context because PET-CT has low sensitivity for tumors of 0–
10 mm (sensitivity of 50% for lesions < 10 mm or 17% for lesions < 8 mm) (23, 24), and PET-CT is not
indicated for lesions < 8 mm or < 10 mm (25–27). In the case of misdiagnosis, even though the patient
could be followed up and get diagnosed in the next scanning, he/she could miss the best treatment
window and allow the tumor to further develop and metastasis (2, 6). The type of lesion had a minimal
in�uence on the diagnostic value. This study is the �rst to analyze the diagnostic value of CACs for lung
cancer across lesion size, imaging lesion type, and comparing its performance with common tumor
biomarkers. The results showed high AUCs for all included lesions ≤ 30 mm, which are the lesions
commonly found during early screening and considered benign (6).

We also showed that the genetic abnormalities in the CACs were similar to those found in their respective
tumors. This is supported by previous studies, in which CACs had similar characteristics to those of the
primary tumor cells (22, 28). This homology might be an indication that the CACs found in peripheral
blood might be tumor cells that detached themselves from the primary tumor and entered circulation in
order to seed novel metastases. Besides, after the surgery, the CACs were signi�cantly reduced, which
support that there was homology in genetic aberrations between the CACs and the tumor cells.

The numbers of CACs might very well represent the lung lesion and could be used for the early diagnosis
of lung cancer. Indeed, more aggressive tumors will show less cell cohesion, leading to more CACs with
the potential to seed metastases (29). Of note, CACs can be found in premalignant lesions, and
malignant lesions since the appearance of cytogenetic abnormalities occur early in tumorigenesis (20),
highlighting their value for the early detection of lung cancer.

Multiple biomarkers in blood are used for tumor liquid biopsies, yet none has been extensively validated
and utilized in clinical settings (7–9). The sensitivity and speci�city of ctDNA for early lung cancer were
53.8% and 47.3%, respectively (30). Regarding CTCs detected using the Veridex CellSearch system, which
is based on an anti-EpCAM antibody, the sensitivity for early lung cancer was only 19.3% (31). In
comparison, the present study showed a sensitivity of 86% to detect lung cancer in all participants.
Nevertheless, this conclusion must be taken with caution as those different biomarkers were not
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assessed head-to-head in the same patients. Future studies should include CACs, CTCs, and tumor DNA,
and those should be tested in healthy controls for validation to ensure that those tests are negative in
patients without cancer.

More traditional biomarkers like CEA, ProGRP, SCC, NSE, and CYFRA21-1 are commonly used for the
diagnosis and management indicators of lung cancer (1, 2, 32), but they are not designed for the early
screening of lung cancer due to low sensitivity (6, 33, 34). In the present study, the AUC and sensitivity of
CACs for early lung cancer were higher than any of those �ve biomarkers, suggesting that CAC could be a
sensitive marker for lung cancer early diagnosis working in conjunction with LDCT.

Despite its strengths, there are several limitations in this study. For instance, we only assessed a relatively
small cohort with high disease prevalence, which may not be su�cient to establish reliable correlations
between CACs and the clinicopathological characteristics of the patients. Nevertheless, a strength of the
present study is that all participants had a pathological diagnosis, even the benign nodules. Many
previous studies included patients with tuberculosis or chronic in�ammation, and they rarely included
those with benign tumors and granuloma. Additional studies with larger cohort would be needed to
guarantee the robustness of the ROC analysis and identify most powerful threshold of CACs for lung
cancer early diagnosis. Another limitation was that other popular liquid biopsies biomarkers, such as
ctDNA and CTC, were not parallelly analyzed. Notwithstanding these limitations, the study �ndings
underscore an interesting biological process during lung cancerogenesis and identi�cation of a novel
biomarker for lung cancer early diagnosis.

Conclusions
In conclusion, CACs could be a promising biomarker for the early diagnosis of lung cancer. In a screening
context, implementing such diagnosis tool may bene�ts lung cancer patients with detection in early stage
and improve prognosis. Our study also suggests that there may be a high homology in genetic
abnormalities between the CACs and the tumor cells in cancer tissue.
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  Total
n=205

Training set
n=112

Validation set
n=93

P

Sex, n (%)       0.573

Male 97 (47.3%) 55 (49.1%) 42 (45.2%)  

Female 108
(52.7%)

57 (50.9%) 51 (54.8%)  

Age, median (IQR) 62 (54, 67) 62 (55,68) 62 (52,66) 0.246

Smoking history, n (%) 51 (24.9%) 28 (25.0%) 23 (24.7%) 0.965

Benign and malignant, n (%)       0.310

Benign 37 (18.1%) 23 (20.5%) 14 (15.1%) 0.692

Benign tumor 11 (5.4%) 8 (7.1%) 3 (3.2%)  

Infection/in�ammatory lesions 22 (10.7%) 13 (11.6%) 9 (9.7%)  

Other 4 (2.0%) 2 (1.8%) 2 (2.2%)  

Malignant 168
(82.0%)

89 (79.5%) 79 (85.0%) 0.113

Squamous cell carcinoma of lung 8 (3.9%) 2 (1.8%) 6 (6.5%)  

Invasive adenocarcinoma 84 (41.0%) 44 (39.3%) 40 (43.0%)  

Microinvasive adenocarcinoma 72 (35.1%) 39 (34.8%) 33 (35.5%)  

Other 4 (2.0%) 4 (3.6%) 0  

Maximum nodule size, median
(IQR)

18 (12, 24) 18 (13, 23) 19 (11, 25) 0.560

Maximum nodule type, n (%)       0.074

Pure ground glass type 70 (34.2%) 42 (37.5%) 28 (30.1%)  

Mixed 39 (19.0%) 15 (13.4%) 24 (25.8%)  

Solid 96 (46.8%) 55 (49.1%) 41 (44.1%)  

Preoperative CAC, median (IQR) 4 (2, 7) 4 (2, 6) 4 (3, 7) 0.893

Postoperative CAC, median (IQR) 1 (0, 5) NA 1 (0, 5) NA

IQR: interquartile range; CAC: genetically abnormal cells. 

Table 2 Comparison of the numbers of preoperative and postoperative CACs
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  Preoperative CAC Postoperative CAC P

Median (IQR) 4 (3, 7) 1 (0, 5) <0.001

IQR: interquartile range; CAC: genetically abnormal cells. 

Table 3 Comparison in chromosomal abnormalities in blood and tissue

  Positive tissue
chromosome

Negative tissue
chromosome

Kappa P

Blood positive (CAC
≥3)

53 3 0.909 <0.001

Blood negative (CAC
<3)

0 22    

CAC: genetically abnormal cells.

Table 4 Sensitivity and speci�city of common biomarkers

Biomarker AUC P 95% CI Sensitivity Speci�city Comparison with AUC of
CAC

CEA 0.478 0.684 (0.372,
0.585)

0.151 0.806 <0.001

SCC 0.516 0.775 (0.408,
0.624)

0.032 1.000 <0.001

NSE 0.506 0.915 (0.399,
0.613)

0.071 0.941 <0.001

Pro-GRP 0.519 0.794 (0.383,
0.654)

0.037 1.000 <0.001

CYFRA21-
1

0.535 0.522 (0.432,
0.637)

0.184 0.886 <0.001

CAC 0.823 <0.001 (0.741,
0.906)

0.863 0.784  

AUC: area under the curve; CI: con�dence interval; IQR: interquartile range; CAC: genetically abnormal
cells; CEA: carcinoembryonic antigen; SCC: squamous cell carcinoma antigen; NSE: neuron-speci�c
enolase; pro-GRP: pro-gastrin releasing peptide.

Figures
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Figure 1

A typical case. (a) Preoperative computed tomography scans. (b) CAC schematic diagram. Cells with 4�,
6-diamidino-2-phenylindole (DAPI) staining (original magni�cation ×100). The combined images of CACs
show polysomy/gain of 3p22.1 (red), polysomy/gain of 3q29 (green), and CEP10 (aqua), whereas
10q22.3 (gold, two copies) was diploid. Genetic abnormalities were identi�ed using a 4-color cocktail of
FISH probes on a BioView Duet-3 instrument (original magni�cation ×400): three red signals consistent
with three copies of 3p22.1; three aqua signals representing three copies of CEP10; three green signals
representing three copies of 3q29; and two gold signals consistent with two copies of 10q22.3. (c) Three
CACs were found by a 4-color cocktail of FISH probes on a BioView Duet-3 instrument. (d) Pathological
HE revealed adenocarcinoma of the lung. (e) Chromosomal abnormalities in tissue.
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Figure 2

Receiver operating characteristics analysis of genetically abnormal cells (CAC) for non-small cell lung
cancer. (a) Training set. Using a cut-off value of ≥3 CAC achieved 86.5% sensitivity, 78.3% speci�city, the
area under the curve (AUC) of 0.887, 93.9% positive predictive value (PPV), 60.0% negative predictive
value (NPV), and 3.98 positive likelihood ratio (PLR). (b) Validation set. Using a cut-off value of ≥3 CAC
achieved 86.1% sensitivity, 78.6% speci�city, AUC of 0.823, 95.8% PPV, 50.0% NPV, and 4.02 PLR. (c) All
patients. Using a cut-off value of ≥3 CAC achieved 86.3% sensitivity, 78.4% speci�city, AUC of 0.823,
94.8% PPV, 55.8% NPV, and 3.99 PLR.
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